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1. \Ltroduction

The main purpose of routing and flow control in a communication net-

work is, roughly speaking, to keep delay per message withing an acceptable

level while minimizing the amount of offered traffic that is rejected by

the network due to its inability to handle it. These two objectives are

clearly contradictory so a good routing and flow control scheme must

strike a balance between the two. It should also take into account a

number of other issues such as fairness for all users, the possibility

that the network topology can be altered due to unexpected link or node

failures, and the fact that the statistics of offered traffic change

with time.

In these notes we consider some aspects of routing and flow control for long-

haul wire data networks in which the communication resource is scarce (as

opposed to local networks such as Ethernet where it is not), and where

there are no issues of contention resolution due to random access of a

broadcast medium (as in some satellite, local, and packet radio networks).

We place primary emphasis on optimal procedures since these offer a more

sound philosophical basis than heuristic schemes and also provide a yard-

stick for measuring the effectiveness of other methods.

We consider primarily the subject of routing in a gasistatic offered

load environment. By routing we mean the set of decisions regarding the

outgoing links to be used for routing data at each subnetwork node. By

quasistatic environment (see [1]) we mean a situation where the offered

traffic statistics for each origin-destination pair change slowly over

time and furthermore individual offered traffic sample functions do not

exhibit frequently large and persistent deviations from their averages.

A typical quasistatic network is one accomodating a large number of

I.
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interactive users for each origin-destination pair and in which the law

of large numbers approximately takes hold. In such an environment it is

valid to base routing decisions on average levels of traffic input flows

which can be estimated from past history measurements.

Situations where the quasistatic assumption is not valid are

typically characterized by the presence of few and large users that can by

themselves overload the network over brief periods of time if left uncon-

trolled. We then talk of a need to provide dynamic routing. By this we

mean short term adjustment of routes to adapt to the instantaneous net-

work state which includes instantaneous traffic input rates as well as

queue lengths. Dynamic routing is a subject that is insufficiently well

understood at present and should probably be studied in combination with

flow control. We will not consider it further in these notes.

While there are situations where routing can be considered in

isolation from flow control, in other cases the interactions between

routing and flow control are so strong that they cannot be ignored in a
9

meaningful analysis. By flow control we mean the set of decisions regard-

ing the amount of traffic to be admitted in the network for each origin-

destination pair or each user pair conversation. It is intuitively clear

that if data is routed efficiently within the network then more traffic

can be admitted into the network without violating the users' dissatisfaction

threshold. Therefore incremental changes in routing can be expected to

have an effect on the amount of traffic that flow control should allow to

enter the network. On the other hand routing changes should take into

account the concurrent effects of flow control if they are to be effective.

The resulting coupling between routing and flow control can be quite complex

.n



and only recently there has been substantial progress towards understand-

ing it. Some of the most important work in this area [10],[11] is described

in the last section where a combined routing and flow control optimization

problem is formulated. It turns out that this problem is essentially the same

as the optimal routing problem and can be solved by simple adaptation of

the type of algorithms described in these notes. Another related subject

of considerable current interest is routing and flow control of real-

time data--that is data that, if not delivered within a specified time

delay, becomes useless. Digitized voice is a prime example of such

data. We refer to [12] for related work.

I
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2. Routing Variables in Quasistatic Routing

Traffic congestion in a quasistatic data network can be reasonably

well evaluated in terms of the arrival rates at each of the transmission

queues. There is one such queue per directed link in the network and its

arrival rate is referred to as the total flow of the link. For a link

(i,k) we use the symbol Fik to denote the corresponding total flow. This

flow is measured in data units per sec where the data units can be bits,

packets, messages, etc. Sometimes it is meaningful to measure flow in

units that are assumed to be directly proportional to data units per sec

such as virtual circuit calls traversing the link.

Congestion is typically measured in terms of some function of the

total flows Fik. For example

( k(Fk) (1)
(i,k)

is a frequently used measure of congestion where D ik(Fik) represents (an

approximation to) the average number of messages in queue or under trans-

mission at link (i,k) when the flow is F ik. A frequently used formula is

Fik
Dik(Fik) C ik-F (2)

where Cik is the transmission capacity of the (i,k) transmission line

measured in the same units as Fik. This is based on the hypothesis that

each queue behaves as an M/M/l queue and is referred to as the Kleinrock

independence assumption. While this hypothesis is almost never true in

practice the expression (1), (2) represents a useful measure of performance

since it expresses qualitatively the fact that congestion sets in when a
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flow F k approaches the corresponding link capacity Cik. Another useful

measure of congestion is given by

max F ik (3)
(i,k) Cik

i.e. maximum link utilization. A computational study [3] has shown that

it typically makes little difference whether the objective function (l)-

(2) or (3) is used for optimizing routing. This is particularly true for

heavily loaded networks where computational results show that optimal

routing with respect to oaie objective function [(l)-(2) or (3)] is within

very few (1-3) percentage points of being optimal with respect to the

other.

It is useful to break down the total link flows into the portions

that have common destination. Thus for a link (i,k) we denote by fik(j)

the flow in the transmission queue (i,k) of data units destined for node j.

Clearly we have

Fik = fik( j )  (4)
J

Furthermore conservation of flow holds at each node in the form

Y fji) + ri(J) = f (jikJ), V i,j with i~j (5)
(m, i) (i,k)

The right side of (5) represents the total outgoing flow from node i that

is destinedfor j, while the left side represents the total incoming flow

into i from other nodes that is destined for j, plus the terms ri(j) which

represents flow entering the network at node i and destined for j. By

adding (5) for all destinations j we see that there is also conservation

4.1
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of total flows at each node i.

The objective of the routing algorithms that we will consider can

be loosely stated as follows:

Given a set of external traffic intputs {r i (j) } [cf. (5)] find a

"desirable" corresponding set of total flows {F ik}

Let us leave aside for the moment the question of how we measure

"desirability" of the set of total flows {Fik} [i.e. which objective

function such as (1) or (3) we use], and concentrate on the instruments

(or controls) in our disposal for influencing the values of {F }. These

are called the routing variables. We first discuss link routing variables

and then consider path routing variables.

The routing variable of link (i,k) with respect to destination j is

defined by

ik (j) = ik (6)
ik f im~i)

m

for nodes i such that f (j) > 0, and represents the fraction of flow
m

arriving at i and destined for j which is routed through link (i,k). We

have

Sik(j) = ik(J) > O, V k,i,j , iij (7)
k

For nodes i and j such that f(j) = 0 any set of numbers
m

satisfying (7) can serve as corresponding link routing variables. Note

that routing variables of the form jm(j) (i.e. i=j) do not make sense

and are not defined.

A set of link routing variables [4k(j)}, i.e. a set of numbers satisfy-
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ing (7), is said to be acyclic and destination oriented (ADO for short)

if the following condition holds:

There is no destination node j and directed cycle (i,kl), (kl,k 2),....

(k i) not containing j along which the routing variables @ik 2
M ikI j)1 O 1 k 2 0),

.... O i(j) are all positive.
m

A little thought shows that this condition implies that given any

pair of nodes i and j there exists a directed path {(i,k 1), (kl,k2),....

(k ,j)} from i to j along which the routing variables Oikl(J), kk2(J) .... ,

km j(j) are positive. It should be clear that in data networks we are primarily

interested in routing varia5le sets that are ADO for otherwise data would

be allowed to travel on a loop with an obvious inefficiency resulting.t

Another easily seen fact is that a set of external traffic inputs {ri('}

and a set of ADO routing variables { ik(j)} define uniquely a correspond-

ing set of flows {fik(j)} via equations (5) and (6). Furthermore if r

represents the vector of traffic inputs and 0 the vector of ADO routing

variables, the corresponding vector f of flows can be defined in terms of

some function f( ,r) which depends only on the topology of the network.

For example
r2141

2 " 2(4)

tWe assume here imp licitly that the objective function is a nondecreasing

function of each total link flow.

~I

, .0
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in the network shown in the figure (links (i,k) with k = 0 are not shown)

we have

f12 (4) = ri(4) 12 (4)

f 1 3 (4) = r1 (4)013(4)

f23 (4) = [r1(4)0 1 2 (4) 4 r2(4)]€23(4)

f24 (4) = [ri(4)0 12(4) + r2(4)] 24(4)

f34 (4) = [ri(4) 012 (4) + r2 (4)]o4 3 (4) + r1 (4)013(4) + r3 (4)

Clearly the form of the function f(p,r) can be quite complicated and non-

linear but this fact does not cause significant algorithmic difficulties.

For example it is easy to construct an algorithm which for given and r

generates the corresponding flow vector f($,r), and the corresponding set

of total flows {Fk (4,r)}. We can then pose the optimal routing problem

of finding a set of ADO routing variables which for fixed and given set

of inputs {ri(j)} minimizes an objective function of the total flows such

as (1) or (3).

An alternate but equivalent formulation of the optimal routing

problem is obtained by considering path routing variables in place of link

routing variables. For each pair w = (i,j) of distinct nodes i and j [also

called an origin-destination (or OD) pair], denote by P the set of allw

simple directed paths from i to j. For each OD pair w = (i,j) the input

ri(j), also written rw, is to be divided into individual path flows hp,

where pCPw , satisfying

rw I h , h > 0 V PCPw (8)
PEPw
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Given a set of path flows satisfying (8) the corresponding path

routing variables for OD pairs w with rw > 0 are defined by
h
-= r PP (9)

w

and simply represent the fractions of input routed along the correspond-

ing paths. It follows that path routing variables satisfy

I = 1, £p > 0, V PP .wPP 
w

Clearly a set of path routing variables together with a set of inputs

{r w } defines uniquely a corresponding set of path flows via (8). These

path flows in turn define uniquely a corresponding set of link flows

obtained by adding, for each link and destination the path flows that

traverse the link and correspond to that destination.

A conclusion is that an optimal routing problem can be posed where-

by, for a fixed and given set of OD pair inputs {r w, we wish to find a

set of path routing variables which minimizes an objective function of

total flows.

It is important to realize that the two formulations of the routing

problem in terms of path routing variables and ADO link routing variables

are equivalent. The reason is that given a set of inputs {r w} and a set

of path routing variables { p} there exists a set of ADO link routing

variables { ik(j)} with the property that Ep } and { ik(j)} generate

identical sets of link flows. The set { ik(j)} is unique except for nodes

i and destinations j for which the total flow F fmi(j) is zero.
m

Te reverse is not entirely true. Given a set of ADO link routing
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variables there is at least one but possibly more than one corresponding

sets of path routing variables that generate identical sets of link flows.

Proving these facts is a simple and instructive exercise for the reader.

[ I
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3. Implementation by Means of Routing Variables

We think of a routing algorithm as a process whereby the set of rout-

ing variables is modified occassionally according to some rules. Before

getting into the details of various types of routing algorithms it is

worth considering briefly the practical implementation of a set of rout-

ing variables. The chief means for doing this are the routing tables

kept at each node. At this point we must distinguish as to whether the

network uses datagrams or virtual circuits.

In a network using datagrams each message or packet (including

packets of the same pair of users) is routed independently of the others.

For the purposes of routing the only information that the message carries

is the destination ID number. Suppose we desire to implement a set of

link routing variables {ik (j)} in a datagram network. One way of doing

this is for each node i to maintain a routing table whereby for each

destination j and each outgoing link (i,k) the routing variable * (j) is
ik

stored together with the actual fraction ik (j) of the number of data

units (messages, bits etc) for destination j actually routed along link

(i,k) during the time elapsed since the latest routing variable update.

When a new message arrives node i looks up its destination j, assigns the

message to the outgoing link (i,k) for which the ratio ikOV/ik(j) is

largest, and updates the corresponding fractions ik(j). There are other

possible implementations which may differ in minor details but the idea

is clear. Traffic is metered to keep track of the actual fractions of

the number of data units travelling along each outgoing link and the choice

of route is designed to match as close as possible the actual fractions

with the target fractions given by the link routing variables. Each time

Uft
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the link routing variables change, each node incorporates the new values

in the routing tables and reinitializes the actual fractions ik(j) to
^' 1 for all links (ik) with

some positive values, for example fik) = a

ik (j) > 0 where m is the number of these links. Note that the link

routing variables actually used for the construction of the routing

tables could themselves be obtained by first determining (using the

"master" routing algorithm) a set of path routing variables for each

OD pair and then computing the (essentially unique) corresponding set

of link routing variables.

In a network using virtual circuits all the messages belonging to

the same conversation travel along the same path during the full duration

of a conversation [By conversation here we mean a connection between two

users (persons or machines) engaged in message exchange through the net-

work.] The path is set up at the beginning of the conversation when one

of the two users requests a connection with the other similarly as for

ordinary telephone calls. Once a path is set up each node along the

path keeps in a table sufficient information to ensure that messages of

each conversation follow the same route. Routing variables come into play

by affecting the choice of route at the beginning of the conversation.

There are several ways that this can be done.

Suppose first that path routing variables {p I are available for each

OD pair. Each node i keeps a count of the number of virtual circuit calls

that use each one of the paths with itself as the origin. It also maintains

the fractions Ep of the number of calls on each path p divided by the total

number of calls on paths that have the same origin and destination as

path p. When a new call request is received at node i for some destination

j, node i calculates the path p for the OD pair (ij) for which / p is

.. ..... .. . .,, . .. " " '-' h''' '' ' .. .- .".. . .. . ' . . .,,,-_p p ",a
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largest, assigns the call on that path, and updates the corresponding

fractions . The actual path is established by sending along the path

a setup packet with the sequence of links of the path stamped on it. The

fractions are of course adjusted each time a virtual circuit is

terminated. As new calls are established and old calls are terminated

the values of the actual fractions Ep drift gradually towards their

desired values p specified by the routing variables even if these values

happen to be substantially different at times due to changes in . It

is of course also possible to change forcibly at any time the routes of

some virtual calls in order to make the actual and desired fractions %
and p close to each other and this must be done each time a node or link

p
fails thereby disrupting some of the physical communication paths.

Consider next the case of a virtual circuit network where we wish

to implement a set of ADO link routing variables { ik[J)}. Each node i

maintains the fractions ik(j) of the number of virtual circuits passing

through node i, having j as destination and routed through link (i,k),

divided by the total number of virtual circuits passing through i and

destined for j. When a new call request is received at some origin node

m with destination j, the node m sends a path finding packet along the

link k for which the ratio jmk(J)/(mk(j) is largest. When the path find-

ing packet reaches a new node, say i, it is subsequently routed along the

link k for which 0ik/Oik(j) is largest, until it reaches the destination

j. At this point the path of the new virtual circuit call will have been

established. Note that this method of using ADO link routing variables

is very similar to the one described earlier for datagrams. Indeed we may

view a datagram as a degenerate form of virtual circuit involving a single

m I.
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packet transmission. If this point of view is adopted the link routing

variable based method of implementation for virtual circuits just described

reduces to the one described earlier for datagrams.

There are a number of variations on the implementation methods

described above. For example p I or o ik(j)} could represent fractions

of flow rather than virtual circuits etc. The main point to keep

in mind is that while the choice of virtual circuits versus datagrams and

the corresponding implementation of the routing strategy are important

practical design issues, they are largely decoupled from the conceptual

issues of how one should choose and update routing variables, i.e., how

one should design the routing algorithm.
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4. Characterization of Optimal Routing Variables

Suppose we are given a directed network with set of nodes N and set of

links L. Let W be a collection of ordered node pairs referred to as

origin-destination (OD) pairs. For each OD pair wCW we are given a

positive number rw respresenting rate of input into the network from

origin to destination measured in data units per sec. Let Pw be the set

of all simple directed paths joining the OD pair w, and for each path

Pe'pw let us denote by hp the flow on path p in data units per sec. We

have thus the constraint

h rw  , h >0, V pP, wEW CI)
PPw p p w

For an OD pair wcW, a path PPw and a link (i,k)eL we denote

1 if path p contains link (i,k)

6 p(i,k) = (2)

0 otherwise

Then the total flow on each link (i,k)eL is given in terms of the

individual path flows by means of the linear expression

Fik = 6 (i,k)h . (3)
wEW pEP pw

In the remainder of these notes we concentrate on an objective

function of the form

Dik(Fik) (4)
(i~k)iL

and the problem of finding the set of path flows {h } that minimize this

pt

I
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objective function subject to the constraints (1) and (3). Reference [3]

considers the problem of minimizing the maximum link utilization

Fikmax{ C- ik (i,k)EL} by using algorithms that bear close relation to those

used for minimizing the objective function (4).

By eliminating the total flows Fik from the objective function (4)

we can write the problem as

minimize X DikR[ 6 (i,k)h p
(i,k)e weW PePw p

subject to I h = r , Y weW (5)PePw P w

h p>0 PEP w wCW.

We assume that each Dik is a twice differentiable function of the

scalar variable F k and is defined in an interval [O,C ik) where Cik is

either a positive number (typically representing the capacity of the

link) or else is +-. The first and second derivatives of Dik are denoted

Dik and Dk and are assumed strictly positive for all Fik E[O,Cik). This

implies in particular that Dik is a convex monotonically increasing

function of Fik.

We wish to characterize optimal solutions of problem (5) and then

derive algorithms for its solution. Note that an optimal set of path

flows {h*} yields immediately a set of optimal path routing variables
p

{ ) via the formula
P

h*

p r

w
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so this formulation of the routing problem is geared towars yielding

optimal path routing variables. On the other hand we have seen that

each set of path routing variables yields an optimal set of link routing

variables. An alternative is to formulate the routing problem directly

_n terms of link routing variables. We refer to the papers [1] and [2]

for a presentation of possibilities along these lines.

A characterization of optimal solutions of the routing problem (5)

is obtained by specializing the following general necessary and sufficient

condition for optimality:

Lemma: Let f: Rn - R be a differentiable convex function on the n-

dimensional Euclidean space Rn, and let X be a convex subset of Rn.

Then x*eX is an optimal solution of the problem

minimize f(x) (6)

subject to xeX

if and only if

Vf(x*)T(x-x*) > 0, V xEX, (7)

where Vf(x*) is the gradient vector of f at x* and superscript T denotes

transpose.

Proof. Assume x* is an optimal solution of (6), and for every xEX con-

sider the function g(a) = f[x* +a(x-x*)] of the scalar variable a. Then

dgm0g(a) attains a minimum at a = 0 over the inverval [0,1] so dg0 > 0.da -"

But dg(0) Vf(x*)9 (x-x*) (using the chain rule) so (7) is proved.di

Conversely assume that (7) holds and x* is not an optimal solution
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of (6). We will arrive at a contradiction. Indeed let iX be such that

f(R) < f(x*) and consider the function g(a) = f[x* + a(R-x*)]. Then

O) > 0 [by (7)] while f(x*) = g(O) > g(l) = f(R). A little thoughtda1 -I

or an elementary argument shows that these conditions contradict the

convexity of g(a) over [0,11 and hence also the convexity of f. Q.E.D.

We now apply the lemma to problem (5). The lemma is applicable since

both tht objective function and the constraint set of (5) are convex.

If h denotes the vector of the path flows hp, D(h) denotes the objective

f action of problem (5) and aD() denotes the partial derivative of Dh p

wit',N respect to h we see that

D(h) = DC)
p (i,k) p

where the derivatives D' are evaluated at the total flows corresponding
ik

to h. From (8) we see that D/3h is the length of the path p when length

of each link (i,k) is taken to be the first derivative Dk evaluated atik

h. According to the lemma {h*} is an optimal set of path flows if it
p

satisfies the constraints of problem (5) and condition (7) is satisfied.

By using (8), condition (7) can be written as

I I d*(h -h-) > 0 (9)
w PFPw

for all h satisfying the constraintsp

Sh = rW, h > 0, V PEPw. ww,
p pPCPw

where d* is the Ist derivative length of the path p given by
p

et
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d* =D ' aD (h *
(ik)Ep ik = _Dh- " (1i)

Conditions (9) and (10) can be clearly decoupled with respect to OD

pair and written for each weW as

I d*(hp-h-) > 0, V h > 0, peP with h = r . (12)
peP w  peP w

It is easily seen (argue by contradiction) that this condition is equivalent

to having for all weW

h* > 0 p = min {d*} (13)

Equivalently we have that a set of path flows is optimal if and only if-

path flow is positive only on paths with minimum 1st derivative length.
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5. Shortest Path Routing and the Frank-Wolfe Method

We have seen that optimal routing results only if flow travels along

minimum first derivative length (MFDL for short) for each OD pair. Equi-

valently a routing (i.e. a set of routing variables) is strictly sup-

optimal only if there is a positive amount of path flow that travels on a

non MFDL path. This suggests that suboptimal routing can be improved by

shifting flow to an MFDL path from other paths for each OD pair. Indeed

this can be shown mathematically by observing that if h = {h p} is a set

feasible path flows and Ah ={Ah p} is a corresponding direction for chang-

ing h then the function of the scalar a given by

G(ca) = D(h + a6h) (1)

has first derivative

dG (a) I Y. I a)~ (h)(2
da a wCW PEPw 3h p

= I dph
weW PEPw

where dp is the first derivative length of the path p (evaluated at the

link flows corresponding to h). Therefore if Ah is positive for MFDLP

paths and negative for all other paths while maintaining the conservation

of OD pair input flow equation

F h = 0 , b weW,
Pp w P (3)

h + Ahp > 0 , PEPw, weW

Jp
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we will have

dG(a) < (
da La=O

which means that the objective function will be reduced by a small

motion in the direction 6h.

The preceding discussion suggests the following iterative algo-

rithm:

Given h = {h } find a MFDL path for each OD pairs. Let h = {h}
p p

be the set of path flows that would result if all input rw for each OD

pair weW is routed along the corresponding MFDL path. Let a* be the

stepsize that minimizes D[h + a(h-h)] over all ae[0,i], i.e.

D[h +a*(h-h)] = min D[h + a(h-h)]. (5)
aE[0,1]

The new set of path flows is obtained by

h - h + a*(hFh) (6)

and the process is repeated.

This algorithm is a special case of the so called Frank-Wolfe

method for solving general nonlinear programming problems with convex

constraint sets (see [4],[5]). It has been called the flow deviation

method (see [6]), and can be shown to reduce the value of the objective

function to its minimum in the limit although its convergence rate

near the optimum tends to be very slow. Proving convergence depends

on selecting a proper value for the stepsize a. The determination of an

optimal stepsize a* satisfying (5) requires a one-dimensional mini-
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mization over [0,1] which can be carried out through any one of several

existing algorithms. However finding a* constitutes an iterative process

which makes the algorithm impossible to implement in a distributed

manner. A simpler method is to choose the stepsize a* in (6) by means

of the formula

(ik) k( 
7)ik

&* = Mrin[l, (i7))7 Dt'k(F--k'Fik )2

(i,k)

where {Fik} and {fik} are the sets of total link flows corresponding

to {h } and {K } respectively, and the first and second derivatives
p p

Dik are evaluated at F. The formula (7) for a* is obtained by

making a second order Taylor series expansion G() of G(a) = D[h + caOi-h)]

around a 0

G(a) = ik {Dik(Fik) + a D!k(Fik)(Fik-Fik)
(i ,k)

P

22,, - 2}
+ 2- Di (Fik)(Fik-Fik)

and minimizing G(a) with respect to a over the interval [0,1].

It can be shown that the Frank-Wolfe algorithm (6) with the choice

(7) for the stepsize converges to the optimal set of total link flows

provided the starting set of total link flows is sufficiently close

to the optimal. For the type of objective functions used in rout-

ing problems it appears that the stepsize choice (7) typically leads

to convergence even when the starting total link flows are far from
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optimal.

Aside from its simplicity the stepsize rule (7) has the advantage

that it can be implemented in a distributed way by means of a scheme

such as the one described below:

Each node i broadcasts the current value of Fik for all of its

outgoing links (i,k) to all other nodes. (This can be done by flood-

ing or through a spanning tree). Each node calculates D!k(Fik) and

Dik(Fik) for all links (i,k) and computes an MFDL path for each OD

pair w for which it is the origin. It then sends the value rw along

the MFDL path. The head node of each link (i,k) adds up the inputs

rw for all the MFDL paths that go through it, computes the total flow

Fik and then broadcasts the values of (Fik-Fik) to all other nodes.

All nodes then can compute the stepsizea* of (7) and compute the

required change in path flows

h p +a* (hP-h)

and corresponding change in the path routing variables. The scheme

requires two messages (Fik, and Tik) per link to be broadcast to all

nodes and one message per OD pair (rw) to be sent to every node along

the corresponding MFDL path. The communication complexity per iteration

is O(LN) + O(N 3 ) if a spanning tree is employed for broadcasting

and O(L 2) + O(N3) if flooding is employed where N and L is the number

of nodes and links respectively. We will describe in the next section

other distributed optimal routing algorithms with better communication

complexity per iteration and a typically better rate of convergence
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than the Frank-Wolfe method.

There are several shortest path routing algorithms used in

practice (see [7]) that resemble to some extent the Frank-Wolfe method

although they fail to achieve optimality in any identifiable sense and

in some cases they don't even come close to doing so. Their general

form is as follows:

(SP) At discrete times an MFDL path is computed for each OD pair and

all new traffic (datagrams or virtual circuits) generated in the

intervening time period is routed along these MFDL paths.

The scheme above presupposes link lengths that are flow

dependent and represent first derivatives of some other functions.

Several shortest path routing algorithms used in practice employ link

lengths that depend in a crude (and discontinuous) manner on the flow

traversing the link. In some cases link lengths are taken to be con-

stant (which corresponds to linear functions Dik) and change only if

the link fails in which case its length LS set tu .vssentially + -).

The ARPANET algorithm [8] uses as link length a time average of packet

delay in traversing the link during the preceding time period.

The performance of algorithm (SP) strongly depends on the choice

of the link function Dik and its first derivative Dik, on the frequency

of routing variable updates, and on the rate at which new traffic is

generated in the network. If datagrams are used exclusively in the

network, algorithm (SP) cannot possibly provide optimal or near

optimal routing. Since there is no restriction for each datagram of

a conversation to follow the same path as a previous datagram, algorithm
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(SP) induces a very abrupt shift of flow when a currently used MFDL path is changed.

As a result, at any given time, each OD pair communicates along a

single path, and this is inconsistent with optimal routing where it

is typically necessary to bifurcate flow at strategic points in order

to avoid overloading some portions of the network relative to others.

Furthermore shortest path routing in datagram networks can exhibit

an oscillatory behavior whereby not only the MFDL paths change

frequently but also an unfortunate tendency is exhibited by the algo-

rithm to select shortest paths that are progressively worse with

respect to any global congestion measure. An explanation and analysis

of this phenomenon is given in [9].

Algorithm (SP) tends to work somewhat better in virtual circuit

networks assuming that whenever an MFDL path update is made the virtual

circuits in use are not switched over to the new path but continue

using the same path as before. This in effect implies a gradual

switch of traffic from the old MFDL path to the new one which may be

viewed as an implementation of the Frank-Wolfe method. The amount of

flow shift from the old MFDL paths to the new one corresponds to the

stepsize used in the Frank-Wolfe method and basically depends on two

factors:

a) The rate at which old conversations terminate and new conversations

are generated and

b) The time interval between MFDL path updates.

- V
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It can be shown (as yet unpublished work) that this routing method

tends to provide a sequence of routings that converges (rather slow-

ly) to a neighborhood of the optimum and then oscillates within that

neighborhood. The size of the neighborhood depends on the (effective)

stepsize of the corresponding Frank-Wolfe method. As the stepsize

decreases (slower rate of generation of new conversations, and faster

MFDL path updates), the neighborhood becomes smaller.

In conclusion it may be said that shortest path routing bears

some relation to optimal routing and the Frank-Wolfe method but it

is often practiced in a way that can result in far from optimal

performance. It makes more sense in virtual circuit networks but

even for such networks its convergence to a neighborhood of an optimal

solution tends to be slow.

!I
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6. Projection Methods for Optimal Routing

Methods in this category are also based on shortest paths and

determine an MFDL path for every OD pair at each iteration. An

increment of flow change is calculated for each path on the basis of

the relative magnitudes of the path lengths and, sometimes, second

derivatives of the objective function. If some path flow becomes

negative on the basis of the corresponding flow increment it is

simply set to zero, i.e. it is "projected" back onto the positive

orthant. There are several methods of this type that are of interest

in connection with the routing problem. They may all be viewed as

constrained versions of common unconstrained optimization methods

such as steepest descent and Newton's method extensive accounts of

which may be found in any text on nonlinear programming, e.g. [4], [5],

[13]. In what follows we describe briefly these methods in a general

nonlinear optimization setting and subsequently specialize them to

the routing problem.

Let f: Rn - R be a twice continuously differentiable convex

function with gradient at any xeRn denoted Vf(x) and Hessian matrix

V2f(x) assumed positive definite for all x. The method of steepest

descent for finding an unconstrained minimum of f is given by the

iteration

Xk+l = xk - ck Vf(xk) ,k = 0,1,... (1)

where a is a positive scalar stepsize determined according to some
k

rule. Common choices for kare the minimizing stepsize determined
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by

f[xk - ak Vf(xk)] = min f[xk - cVf(xk) ]  (2)
a>O

and a constant positive stepsize a

=a Vk. (3)

There are a number of convergence results relating to method (1) with

stepsize choices (2) or (3). For example if f has a unique uncon-

strained minimizing point it may be shown that the sequence {xk} gen-

erated by (1), (2) converges to this minimizing point for every start-

ing x0. Also given any starting vector x0, the sequence generated

by (1), (3) converges to the minimizing point provided a is chosen

sufficiently small. Unfortunately however the speed of convergence

of {xkI can be quite slow. It can be shown [5], [131 that for the case

of the line minimization rule (2) if f is a positive definite

quadratic function

f (x) xTQx - bTx,

where Q is a positive definite symmetric nxn matrix and b is a given

vector, then there holds

f(xk+l )f* M-m 2 f* = min fx)

f(xk) -f* < (_ +!)

where M and m are the largest and smallest eigenvalues of Q respective-

ly. Furthermore there exist starting points x0 such that (4) holds

with equality for every k. So if the ratio M/m is large (this cor-
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responds to the level sets of f being very elongated ellipses), the

rate of convergence is slow. A similar result can be shown for the

method (1) and (3) and these results can be shown to hold in a

qualitatively similar form for general convex twice continuously

differentiable functions f with everywhere positive definite Hessian

matrix.

The rate of convergence of the steepest descent method can be

improved by premultiplying the gradient by a suitable positive definite

scaling matrix Dk thereby obtaining the iteration

Xk+l = xk - CkDkVf(xk) , k = 0,1,... (5)

From the point of view of rate of convergence the best method is

obtained with the choice

-l
Dk = [Vf(xk) ]  (6)

This is Newton's method which can be shown to possess a very fast

(quadratic) speed of congergence near the minimizing point. Un-

fortunately this excellent speed of convergence is achieved at the

expense of the potentially substantial overhead associated with the

inversion operation in (6). It is often useful to consider other

choices of Dk which approximate the "optimal" choice [V 2f(xk)] -1

but do not require as much computation overhead. A choice that often

works well is to choose Dk to be a diagonal approximation to the

inverse Hessian, i.e.
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a 2f (xk)
12 2-1

D k 2 f ( x k ) 0

Ok ax 2)( 2 (7)

a2C -l

0 2~ f(xk) -
C axn ) 2

With this choice the method (5) can be written in the simple form

2 -1
i i 2 f(xk) -I f xk)

xk+ 1 = xk - Ok (xi f2 ax i  , k =0,1,... (8)] i i = l,...n.

Consider now the problem of minimizing the convex twice con-

tinuously differentiable function f: Rn - R subject to the nonnegativity

constraints xi > 0, i = 1,..., n, i.e. the problem

minimize f(x)

subject to x > 0. (9)

A straightforward analog of the steepest descent method (1) is given by

Xk+l = [xk - NVf(xk)] , k = 0,1,... (10)

where for any vector zeR we denote by [z] + the projection of z onto

the positive orthant

..
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maxfO,z1 }

[z] +  maxfO,z 2  (11)

max{0,z n I

It can be shown [14] that the convergence results mentioned earlier

in connection with the unconstrained steepest descent method (1) also

hold true for the constrained analog (10). The same is true for the

method

Xk+ [x - ckDkVf(xk) +  (12)

where D is a diagonal positive definite scaling matrix such as (7) and

for other rules of stepsize selection. While the assumption that Dk is

diagonal is essential for the validity of iteration (12), there are

modified versions of (12) in which Dk is chosen nondiagonal on the basis of

the second derivatives of f and for which the fast convergence rate of

Newton's method is realized. We will not consider these methods in

these notes and we refer the reader to [16] and [15] for related

description and analysis, as well as application to the routing problem.

In what follows we concentrate on the application of the simple method

(12) to the routing problem for Dk chosen to be a diagonal approximation

to the inverse Hessian matrix.

Consider the routing problem in terms of path flows

minimize I Dik [ 1 1 6p(i,k)h I D(h) (13)
(i,k) wcW pP Pw p

subject to h = rw  , h > 0, V wew, peP
PEPw p p
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Assume that after k iterations we have a feasible set of path flows

f}h and let {Fm} be the corresponding set of total link flows. For
p im

each OD pair w let pw be an MFDL path [with respect to link lengths

D!m(F. )]. We can convert problem (13) (for the purpose of the nextim im

iteration) to a problem involving only positivity constraints by ex-
pressing the flows of the MFDL paths pw in terms of the other path

flows while eliminating the equality constraints I h = r in the

process. Thus we write for each weW

h- = r - I h (14)
Pww

and substitute h- in the objective function D(h) thereby obtainingPw

a problem of the form

minimize D(h) (15)

subject to h > 0, V wEW, PEP , p $ P
p ~ w

where h is the vector of all path flows which are not MFDL paths. The

objective D(h) is obtained from D(h) once the MFDL path flows h-Pw

weW are substituted by their expressions (14) in terms of the other

path flows. Clearly we have

- kk k
9D (h) 3D(h) 3D(h) , pPp

wh 3ha- VPPW Pw (16)
p hp w

for all weW. We have already seen in the previous section that 3D(h) isah
p

the first derivative length of path p, i.e.
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3D(h) k -!( k (17)
ahp (i,m)Ep im im

Since pw is an MFDL path we have from (16)

> 0, V weW, Pep P (18)
Dhp -

Regarding second derivatives, a straightforward differentiation

of the expression (16), (17) for the first derivative shows that

a (kM kV w w & A -P( 9

(h )2 (im) (19)

where, for each p, is the set of links that belong to either the path

p, or the corresponding MFDL path pw but not both.

We now have available expressions for both first and second

derivatives of the "reduced" objective function D(h) and thus we can

apply the projection method (12) with the diagonal approximation of the

inverse Hessian as scaling matrix. The iteration takes the form

hk+ I  = max {0, hk - ak Lp (d -d- )} V weW, PEPw' p # Pw
p p p P P

(20)

where d and d- are the first derivative lengths of the paths p and

Pw given by [cf. (17)]

d = D!(Fk), d- = D!(F.) (21)

and L is the "second derivative length"
p

L = D,' (Fk) (22)
Lp (i m)

t

Lp
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given by (19).

The stepsize ak is some positive scalar which may be chosen by a

variety of methods. For example ck could be chosen constant or by some

form of line minimization. More about stepsize selection will be said

later.

The following observations can be made regarding iteration (20):

a) Since for each OD pair wEWwehave d > d- for all p A P it
SPW w

follows that all path flows hp, p A Pw which are positive will be re-

duced with the corresponding increment of flow being shifted to the

MFDL path pw"

b) Those path flows hp, p # _P which are zero will stay at zero.

Therefore the calculation indicated in (20) should only be carried out

for paths that carry positive flow.

c) Only paths that carried positive flow at the starting flow

pattern or were MFDL paths at some previous iteration can carry positive

flow at the beginning of any single iteration. This is important in

that it tends to keep the number of paths that carry positive flow small

with a corresponding reduction in the amount of calculation and bookkeep-

ing needed at each iteration.

Regarding the choice of the stepsize ck there are several pos-

sibilities. It is possible to select ak to be constant (ak E a, V k),

and with this choice it can be shown (the proof is essentially given in

[171) that given any starting set of path flows there exists 3 > 0 such

that if for all k we have 0 < ak  a then a sequence generated by

iteration (20)-(22) converges to the optimal value of the problem. A
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crucial question has to do with the magnitude of the constant stepsize.

It is known from nonlinear programming experience and analysis that a

stepsize equal to unity usually works well with Newton's method as well

as approximations to Newton's method that employ scaling based on

second derivatives [S], [13]. Experience has verified that a choice

of a in (20) near unity typically works quite well in iteration (20)

regardless of the values of the input traffic pattern {rwl. Even

better performance with unity stepsize t is usually obtained if

iteration (20) is carried out one OD pair (or one origin) at a time,

i.e. first carry out (20) with ck=l for a single OD pair (or origin) ad-

just the corresponding total link flows to account for the effected change

in the path flows of this OD pair (or origin), and then carry out (20) with

ak=l for the next OD pair (or origin) until all path flows are taken up

cyclically. The rationale for this is based on the fact that by dropping the

off-diagonal terms of the Hessian matrix [cf. (5),(7)] we are in effect

neglecting the interaction between the flows of different OD pairs. In

other words iteration (20) is based to some extent on the premise that

each OD pair will adjust its own path flows while the other OD pairs

will keep theirs unchanged. By carrying out (20) one OD pair at a time

we can reduce the potentially deterimental effect of the neglected off-

diagonal terms of the Hessian and increase the likelihood that the unity

stepsize is appropriate and effective. Under these circumstances iteration

(20) works well with a unity stepsize for almost all networks and traffic

input patterns likely to be encountered in practice.

Another possibility, which is better suited for a centralized

w~
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implementation is to select ak by a simple form of line search in

equation (20). Thus let {FikJ be the set of link flows corresponding

to hk and let i ik} be the set of link flows corresponding to the

set {W } given by [cf. (20) with ak = 1]
pk

h = hk -L-l( V wEW, PEPw' p  P
p p p dppw p wPpw

wwh = rh_

w w PPw

The stepsize ak in (20) is chosen to minimize the 2nd order Taylor

series expansion of the objective along the line segment connecting

Fik } and {T A}, i.e. [cf. (7)]

ikik D'(F-F
c = -(i,k) ik (ik-Fik

I D11 (F -F(ik) i ik i

The algorithm (20) described above typically yields rapid con-

vergence to a neighborhood of an optimal solution. Once it comes near

a solution (how "near" is "near" depends on the problem) it tends to

slow down. Its progress is often satisfactory near a solution and in

any case far better than that of the Frank-Wolfe method.

In order for one to obtain fast convergence near a solution (and

therefore also an accurate approximation to an optimal solution in a

reasonable amount of time) it is necessary to take fully into account the

off-diagonal terms of the Hessian matrix and introduce some form of line

search for finding a proper stepsize. Surprisingly it is possible to

implement sophisticated

- .1
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methods of this type (see [15]) although we will not go into this

further. We only mention that these more sophisticated methods are

based on a more accurate approximation of a constrained version of

Newton's method (using the conjugate gradient method' and attain the

very fast rate of convergence of Newton's method near an optimal

solution. However when far from a solution their speed of convergence

is usually only slightly superior to that of iteration (20). So if

one is only interested in getting fast near an optimal solution but

the subsequent rate of progress is of little importance (as is typical-

ly the case in practical routing problems) the simple iteration (20)

is usually fully satisfactory.

We now illustrate the algorithm (20)-(22) by means of an example:

Example: Consider the network shown in the figure below:

r,=4 r2= 8

1 2

There are only two OD pairs (1,S) and (2,5) with corresponding inputs

r1 = 4, r2 = 8 as shown in the figure. We consider the following

two paths for each OD pair:
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Paths of OD Pair (1,5):

pl(l) = {(1,4),(4,5)}

= {(1,3), (3,4),(4,5)}

Paths of OD Pair (2,5):

Pl(2) = {(2,4), (4,5)}

P2(2) = {(2,3), (3,4), (4,5)}

Consider the instance of the routing problem (13) where the link

objective functions are all identical and given by

1 2(F (Fik
Dik ik = , V (i,k).

Consider an initial path flow pattern whereby each OD pair input is

divided equally between the two available paths. This results in a

flow distribution given in the following tables:

OD Pair Path Path Flow Link Total Link Flow

(1,5) pl(1) 2 (1,3) 2

P2 (l) 2 (1,4) 2

(2,3) 4

(2,5) P1 (2) 4 (2,4) 4

P2(2 )  4 (3,4) 6

(4,5) 12

Table 1 others 0

Table 2

The first derivative length of each link is given by

Dik(Fik) ik
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so the total link flows given in Table 2 are also the link lengths

for the current iteration. The corresponding first derivative lengths

of paths are given in the following table:

OD Pair Path 1st Der. Length

(1,5) Pl(l) 14

P2(0) 20

(2,S) Pl( 2) 16

P2 (2) 22

Table 3

Therefore the shortest paths for the current iteration are Pl(1)*

and pl(2)0 for OD pairs (1,5) and (2,5) respectively.

We now show the form of iteration (20)-(22) for each of the OD

pairs:

OD Pair (1,5): Here for the nonshortest path p = p,(G) and the

shortest path pw = pl(l) we have dp 20, d- =14. We also have

L = 3 [each link has second derivative length Dk = 1 and there are
pA
three links that belong to either pl(l) or P2 (1) but not to both

.Lcf. (19),(22)]. Therefore iteration (20) takes the form

h max{o, 2- m-1 (20-14)) 0

- .. _-.max{O, 20 - 2a}

and
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so the total link flows given in Table 2 are also the link lengths

for the current iteration. The corresponding first derivative lengths

of paths are given in the following table:

OD Pair Path 1st Der. Length

(1,S) p 1(l) 14

P2(0) 20

(2,5) Pl( 2) 16

P2(2) 22

Table 3

Therefore the shortest paths for the current iteration are pl(l)

and pl( 2) for OD pairs (1,5) and (2,5) respectively.

We now show the form of iteration (20)-(22) for each of the OD

pairs:

OD Pair (1,5): Here for the nonshortest path p = P2 (1) and the

shortest path p = pl(1) we have dp 20, d- 14. We also have
w p1(l

Lp= 3 [each link has second derivative length Dk = 1 and there are
pA

three links that belong to either pl(l) or P2 (1) but not to both

cf. (19),(22)]. Therefore iteration (20) takes the form

1

h max{O, 2 - -1 - (20-14)}
p3

= max{O, 2 - 2ak}

and
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h- -r 1 -h

Pw p

= 4 -max{O, 2 - 2I.}

OD Pair (2,5): Here for the nonshortest path p = P2(2) and the

shortest path p = p (2) we have dp = 22 and d- 16. We also have
w p pw

L = 3 and iteration (20) takes the formp

h max{O, 4 - ak L(22-16)}
p3

= max{O, 4 - 2ak}

and

h- w r2 -h

= 8- max{0, 4 - 2 k}

More generally let h (1), h2 (1), h1 (2), h2 (2) denote the flows

along the paths p1(l), P2 (l), pl( 2), P2 (2), respectively at

the beginning of the iteration. The corresponding path lengths are

as follows:

dpl )  = 1l(1) + r 1 + r 2

dp 2 (1) = 2h 2 (1) + h2(2) + r1 + r 2

pl(2)= h1 (2) 1 2

dP2 (2 ) = 2h2(2) + h2 (1) +1 r 2

The second derivative length Lp of (22) equals 3. The algorithm

(20)-(22) takes the following form:

L-7
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OD Pair (1,5):

If dpl(1 } > dp2(1 )

hl(1) *-max{O, h(1) - -[dpl - d D

h2(1) + r1 - max{O, h1 (1) - 35 dpl(l ) - dP2(l)]}

If dpl(1) < dp2 (l)

h 2 (1) - max{O, h2 (1) - d l - d( 1 )]

hi(1) - r I - max{O, h2 (1) - [dp() - dp 1]

OD Pair (2,5):

If dP( 2) >P2( 2 )

h 1 (2) - max{O, h 1 (2) - Ed pl(2) - dP2( 2 )]}

h2 (2) - r2 - max{O, h (2) - K- dd P

If dl ( 2 ) dP2 (2 )

h 2 (2) max{O, h 2 (2) - . [dp 2 ( 2 ) - dpJ( 2 )]}

hl(2) r 2 - max{O, h2 (2) - P (2 ) - dpl( 2 ) ] }

Notice that the presence of the link (4,5) does not affect

at all the form of the iteration and indeed that should be so since
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the total flow of link (4,5) is always equal to rI+r 2 independently

of the routing.

The following table gives sequences of successive objective

function values obtained by the algorithm for different stepsize

values, and the "all OD pair at once" and "one OD pair at a time"

modes of implementation. The network topology is the same as above

except that the inconsequential link (4,5) is deleted. The starting

point for all runs is

0 0 0 0
hl(l) = 0, h2 (l) = 4, hl(2) = 0, ho(2) = 8,

i.e. all flow is initially routed through the middle link (3,4) which

is the worst possible starting flow pattern. The stepsize is chosen

to be constant at one of three possible values (ak E 0.5, ak E 1,

ak E 1.8). It can be seen that for a unity stepsize the convergence

to a neighborhood of a solution is very fast in both the one-at-a-

time and the all-at-once modes. As the stepsize is increased the

danger of divergence increases with divergence occuring typically

first for the all-at-once mode. This can be seen from the table

where for ak = 1.8 the algorithm converges in the one-at-a-time

mode but diverges in the all-at-once mode.

We finally mention two possible distributed implementations of

iteration (20). One possibility is for all nodes i to broadcast to

all other nodes the current total flows Fk of their outgoing links
im

(i,m). Each node then computes the MFDL paths of OD pairs for which

it is the origin and executes iteration (20) for some fixed stepsize.
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Iteration All-at-Once One-at-a-Timek -o. %-1.o 0 ,=1.8 %_~ %-.0 %-I.8

0 112.0 112.0 112.0 112.0 112.0 112.00

1 38.88 32.00 40.00 42.44 29.33 40.00

2 30.39 29.33 46.72 31.54 29.00 37.15

3 29.28 29.03 40.00 29.63 29.79

4 29.09 29.00 46.72 29.29 29.56

5 29.03 40.00 29.08 29.33

6 29.01 46.72 29.03 29.18

7 29.00 40.00 29.01 29.12

8 46.72 29.00 29.09

9 40.00 29.06

10 46.72* 29.03

Table 4

t,



-46-

This corresponds to the "all OD pairs at once" mode of implementation

and requires O(LN) or O(L 2) link flow transmissions depending on

whether a spanning tree or flooding is used for broadcasting.

The other possibility is for all nodes i to broadcast to a

special node (say node 1) the current total flows F k  This nodeim" hsnd

computes the MFDL paths of OD pairs for which it is the origin and

executes iteration (20) for a unity stepsize. It then computes the

adjusted values of the total link flows taking into account the

results of its own iteration and passes these values to a neighbor-

ing node who does the same thing until all nodes are taken up cyclically.

This corresponds to the "one at a time" mode of implementation. It

requires the same order of communication complexity as the "all at

once" mode described earlier. For both implementation modes the com-

munication complexity is more favorable than the one of the distributed

implementation of the Frank-Wolfe method described in the previous

section.
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7. Combined Optimal Routing and Flow Control

While routing is concerned with the choice of good routes for

messages (or other data units such as packets, virtual circuits, etc.)

that have been accepted into the network, flow control deals with the

question of whether particular messages (or other data units) should

be allowed to enter the network. It is possible to consider several

types of flow control in a data network depending on the points

between which it is exercised (see [18] for a survey). Thus link-

by-link (or hop level) flow control refers to procedures that limit

the amount of flow from the headnode to the tailnode of a link. End-

to-end flow control refers to procedures that limit the amount of

flow that is input from external sources at an origin node of the

communication subnetwork and is destined to another node, i.e. the

input flows rw introduced in Section 4 [cf. the routing problem (S)].

This section deals with the possibility of combining routing

with end-to-end flow control by adjusting optimally both the routing

variables as well as the inputs rw. If the input r wis measured in

terms of virtual circuits, then its optimal value can be viewed as a

target value that the origin node strives to achieve by blocking or

allowing new calls generated from external sources. Similarly in

integrated voice and data networks r can be related to rate of encod-

ing of digitjied voice and can be directly adjusted at the origin

nodes (see [12]). When flow control is effected in terms of end-to-

end windows (see [18]) there is some difficulty in determining window

sizes that achieve the desired optimal inputs rw. We refer the reader

to (10], [11] for related discussion. In what follows we concentrate

VJ
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on formulating a problem of adjusting routing variables together with

the inputs r so as to minimize some "reasonable" objective function.

We subsequently show that this problem is mathematically equivalent

to the optimal routing problem examined in sections 4-6 (rw: fixed)

and therefore the optimality conditions and algorithms given there are

applicable.

If we try to minimize the objective function Dik(Fik)
(i, k) EL

used for the routing problem [cf. (5)] with respect to both the path

flows {h } and the inputs {r }, we unhappily find that the optimal
p iv

solution is to set h = 0 and r = 0 for all p and w. This indicatesp w

that the objective function should be modified to include a penalty

for the inputs rw becoming too small and leads to the problem

minimize [ Dik[ [ . 6 (i,k)h I + e (r ) (23)
(i,k) £L weW PCPw hp] weW

subject to I h = r, V weiPp pw p w

hp> 0, V PePw , weW

0 < r < ,w VweW.

Here the minimization is to be carried out jointly with respect to

{h p} and ir w}. The given values rw represent the amount of input

desired by OD pair w, i.e. the maximum amount of input for w that

would result if no flow control was exercised. The functions e are

of the form shown below

I
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ew(rw)

and provide a penalty for throttling the inputs rw . They are assumed

to be convex, and monotonicallydecreasing on the half line (0,0). We

assume that their first and second derivatives e' and e" exist on
w w

(0,-) and are strictly negative and positive respectively. An

interesting class of functions ew is specified by the following

formula for their first derivative

_aw bw
el(r) = - , aw, bw : given positive constants

As will be explained later in this section (see also [10]), the

parameters aw and bw influence the magnitude of input rw and the

priority (relative magnitude of input allowed under heavy load con-

ditions) of user class w respectively.

Similarly as for the routing problem hp denotes the flow on path

p, however it is important to note that some additional flexibility

is provided by adopting a broader view of w and considering it as

a class of users sharing the same set of paths Pw . This allows the

possibility of providing different priorities (i.e. different functions

ew) to different classes of users even if they share the same paths.

Furthermore it is possible to consider a problem where Pw consists

1 ....
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of a single path for each w in which case the routing component of

the problem is essentially eliminated (hp = rw). A problem of strict-

ly flow control results namely that of deciding upon the optimal

fraction of the desired input flow of each user class that should be

allowed into the network.

We now show that the combined routing and flow control problem

(23) is mathematically equivalent to a routing problem of the type

considered in Section 4 [cf. (5)]. Indeed let us introduce a new

variable h for each wEW via the equation
Pw

r = r - h (25)

We may view h as the amount of overflow (portion of r blocked out ofPw w

the network) and consider it as a flow on an overflow link pw connect-

ing directly the origin and destination nodes of w as shown below

2 /Destination
iigh Pnode of w

Origin OVERFLOW
of w LINK

h
Pw

If we define a new function ew by

wwe w(hw) e ew(r w-h pw)26
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problem (23) becomes in view of (25)

minimize D h 6 (i,k)] + Y e (h ) (27)
(i,k)eL w PET wP wW

subject to ) h + h = r V wEW
P ePw P PW w

h > 0, VP WP WE.

The form of the function e of (25) is shown below
w

'j wh )a I

If ew (r) -o as r w  0 (i.e. there is "infinite penalty" for com-

pletely shutting off the class of users w), -hen we have e-w (h P 0

as the overflow h approaches its maximum value--the maximum inputp
wrw . So we may view ew as a "delay" function for the overflow link

and consider rw as the "capacity" of the link.

It is now clear that problem (27) is of the type considered in

Sections 4-6 and that the algorithms and optimality conditions given

there apply. In particular application of the optimality conditions

of Section 4 yields the following result [cf. (13)]:

A feasible set of path flows {h*} and inputs {r*} is optimal
p w
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for problem (23) if and only if the following conditions hold for each

wEW:

h* > 0, {d*}, d* < -e'(r*) (28a)

PPw P

r* < r -e w r w)  = min {d*} (28b)
w w w eP 

w  P

where d* is the first derivative length of path p [d* D! (P,
p p (ik)ep ik ik

and Fik is the total flow of link (i,k) corresponding to

cf. (11)].

The meaning of the parameters a and b in the objective function
i w w

specified by the formula [cf. (24)]

e'(r (a) (29)
w 

can now be made clear in the light of the optimality conditions (28).

Consider two distinct classes of users i and w2 sharing the same paths

(PW1 = P ). Then the conditions '26) imply that at an optimal solution

in which both classes of users are throttled (r* < r r* < r ) we
w1 1, 2 w2

have

-e' (r*) = -e' (r* ) = min {d*} = min {d*}
W1  1  2  2  pE Pw p" PPw p

If el and e' are specified by parameters a, b and aw, bw as

wI w2WPw 1  w 2 1 2

in (29) we see that:
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a) If b = b then

r* a

r* a
w2  w2

and it follows that the parameter aw influences the optimal relative

input rate of the user class w.

b) If a = a and b < b (see the figure below)

mind} (w w2  W2

P. \ rw- )

bw 2 > bwl~~w,>O,

rw

rw ! rw ,

then the condition (30) specifies that under heavy load conditions

(r* r' : small) the user class w2 (the one with higher parameter

b w ) will be allowed a larger input. It follows that the parameter bw

influences the relative priority of the user class w under heavy load

conditions.

Optimal solutions of problem (23) possess several interesting

properties. We refer to [10]-[12] for a more complete discussion.

The reader may wish to verify as an exercise that the set of optimal
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{r* } is unique (although the set of optimal {h*} need not be unique).
w p

Furthermore if r* < rw, i.e. a positive amount of input for w is throt-w

tled, then the optimal input r* will not change if r is increased. Thislv w

means that the optimal input r* is insensitive to increased demand fromw

the user class w beyond a certain threshold.

It

, ,..
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